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Milnor K-theory

Norm-
Residue
Theorem

Let k be a field. Milnor defined a graded ring Ky(k), called the Milnor K-theory of k,
as follows:

® KM(k) =0 for r <0;

° Ké/’(k) =17

* KY(k)=k*; h-0

® ForY > 2, we define Kf/’(k) = M where [ is the subgroup generated by

elements of the form a; ® - -- ® a, where a; + a; = 1 for some i < j. The class

{a1 ® --- ® a,} is typically denoted as {a1,- - ,ar}.—»

The Milnor K-theory can be described in total as the quotient of the tensor algebra
T*(k*) by the two sided ideal / generated by elements of the form {a,1 — a} for

aek—{0,1}. C 'l Fal
aeol-o

> AU
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Milnor K-theory

Norm- 18b = 1o9%

Residue There are some immediate relations we can deduce from the definitions:

Theorem
— — (a1 d bh-
® Because 0_:{&&}, we have {a,b}____{_a_,f}. p—1% 40“ . l)l) 0

1

® Because —a = ——2;, we have

1—a
{a—ap={a }—{al—a}+{a Tt
/-h__’ M
:‘Of{a,lfa_l}:El,lfa_l}zo.
® We have -0}

0 ={ab,—ab} = {a,—a} + {a, b} + {b, i‘at + {b, b}
=0+ {a,b} + {b,a} + {b,—1} + {b, b}
={a,b} + {b,a} + {b,—b}
= {a, b} + {b,a}

In particular, the third relation implies the symbols in Kff’(k) are alternating: For any
permutation 7 with sign (—1)™ we have

{Xﬂ'(l)7 to 7X7r(n)} = (71)77{)(1’ T 7X"}' /b

—
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Milnor K-theory

Let us see a basic example of Milnor K-theory:

Proposition 1

Let k = Fq be a finite field. We have 12> - .
KM(k)=0,r > 2. K"y&)" @1 h/'L
Remember that unit group of a finite field is always cyclic, so any element in K¥ (k)

can be written as o
x R
{x",x"} = mn{x,x}. hOVL;‘:

el

so, we just need to\;how that {x, x} = 0 I;ﬁ |s§'\gn number, we have

{x,x} = {5‘;&}\ If g is an odd n ve 2{x, x} = 0. Hence, for any
odd integel.r m,n, it's true that {_x,x}.f m{x, x} = {x™ x"}. Since the odd powers of
x are classified as non-squares, it suffices to find a non- e u such that 1 — u is also
a nonsquare. Notice the map u — 1 — u is an injection on the set F; — {0,1}. There is

-1 -3 . q
qT nonsquares and qT squares, so necessarily some nonsquare will go to a nonsquare.
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Etale Cohomology and Galois Cohomology of a field

Norm- Let X = Spec(k). We consider the small étale site Xg;.

Residue

Theorem
Rl Proposition 2
Huang - E
Let k be the separable closure of k. There is an equivalence of categories between

abelian sheaves over X¢; and the category of cont{duous (Every element has an open
stabilizer) G = Gal(k/k)-modules.

Let F be an abelian sheaf over %k- Let / be the poset of finite Galois extension of k
in k. Then we can set M = colim;r; F(k’). It ha g—action ind CQM) the
Gal(K’/k)-action on F(K'). - el_.ﬁ,, Hﬁ’ AU e Jv

On the other hand, given a continu@us G-module M, for any finite separable extension
k' of k, we define F(k') = MGal(k/K') | this defines a product preserving presheaf over
Xgt by remembering every object in X¢; is a finite coproduct of affine schemes™ 1§,
represented by finite separable extensions of k. To check the sheaf condition, it's it
enough to check for any finite separable extension k'’ /k’, the following sequencew

0= F(K') = F(K') = F(k" @ kY= F( T «)= T[] F®&")
—_ Gal(k’ /k') Gal(k'" k")
is exact. /‘\/IIHM-

ki1

b
i

r

L}
@

~
N
N



Etale Cohomology and Galois Cohomology of a field

Norm-
Residue Proof Continued.
Theorem

Pengkun By construction, we want to check
Hu
0 MGal(Z/k’) _ mGal K/K' i H MGal(Z/k”)
b ¢ Gal(Kk"’ /)

is exact. The first one is injective since Gal(k/k"") is a subgroup of Gal(k/k’). The
second map is m > HaeGal(k" k/)(m — o(m)), so its kernel Is exactly

b. - (Mcal(i/k“))cal(k”/k/) — pGal(k/k")
= = .

To check it gives an equivalence of categories, we need to see there are natural
isomorphisms (exercises)

(colim F(i))(/K) = F(K)

—
and an isomorphism of G-modules 1

colim MGI(K/D) =~ pg.
icl

-




Etale Cohomology and Galois Cohomology of a field
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. Under this equivalence of categories, the global section function F — F(k) is
T corresponding to the functor M — MG(k/k) Hence, for an an étale sheaf F over

Spec there is an isomorphism of cohomo 05 cohomolo M
S RELY, RS MLy

et(X F) H* GaI k/k): F(k))
———
Now, let us consider the sheaves that is related to the Norm-residue theorem. For start, ,

there is the multiplicative group scheme G, defined by sending X to (X, Ox)* Gon=
Let / € Nbea teger such that it's not equal to the characteristic of the field. So

- that [ is invertible on Spec(k). #n we can define a map of Etale sheaves
- 1: Gm — G by x € G(U) = x' € Gm(U).

Proposition 3

There is a short exact sequence of Etale sheaves

0= u —>Gn—>Gn—0,

where ;@(U) = {x e [(#,0p)*|x =1}. Q‘DY_’
&
sl
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Etale Cohomology and Galois cohomology of a field
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Hu
mwimmmp. It's enough to show this is a surjective
map of sheaves. To see this, we need to show for every s € Gm(U), there is an open
covering {U; — U} such that s|y, is in the image /: Gm(U;) — Gm(U;). Suppose
U = Spec(A), we set V = Spec(A[T]/(T' —s)). The map V — U is surjective

[/ because the corresponding map is faithfully flat. Because the derivative of T —sis
8 IT'—1 is a unit,_the ring map A — A[T]/(T' —s) is a standard étale map by defmition,
which impliéS’V — U is an open covering. s|v is in the image by construction. If U is

not affine, we can consider the relative spectrum & Mb‘)ﬂ.w)
éi m V:Spch(OU(t)/(t’fs)) - U
P

and restricting to its affine open subset. O

Notice this sequence is not exact if we replace étale by Zariski.

\_,—M
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Etale Cohomology and Galois cohomology of a field

The che indicates that there is a long exact sequence of cohomology
groups ”L ,‘&,(Kl”b
0 — H(X; 1) — HS(X;Gm) — HL(X: Gm) — HE(X; 1) = HL(X;Gm) — -
For the 0-th cohomology, v:e have /L. ;l)
H2,(X;Gm) = k*.

Hence, we have
HE (X ) = Ker(l: k* — k*)
@ =

For a field k containing an /-th root of unity, we see that

HE(X: 1) = 2,1.

—_

Otherwise, we have Hgt(X; 1) = 0. For the first cohomology, we have th¢ Hilbert 90;

_ \
H:,(X; Gm) = HY(Gal(k/k); k*) = 0.
—— 7
This implies that
HL(OG ) = k%) = 0 .
LAY
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Etale Cohomology and Galois cohomology of a field

Norm- On étale cohomology, one can imagine one can define an external cup product:
Residue

Theorem n . m . m-+n .
H’?Q(,F)(XJI:IM‘(X,G)AH (X; F® G)

This gives a graded ring (for * = 0, u®0 =1Z/I): VL K\“W& ) }b&”/ \

(X ® *) = EP HI(X; u®
- e Q"“}’L)/z.

For [a],[1 — a] € k* /I 2 HY (X, ) where a # 1,0, we have a relation

X

[a] U1 — a] = 0 € HZ(X; "),

): o \Ij’ .

Let a = \/a and consider E = k(). Then the inclusion i : k — E induces two natural
maps on the étale cohomology groups resg /y : H*(k;,u,®*) — H*(E;,u,®*) and

coresg /i (E; p*) = H*(k; ") that are compatible with cup product in the

ﬂfaﬁmng

coresg /i (x) Uy = coresg /i (x Uresg /i (y))- “‘ }lﬂ?
o - Kkl » U

SNl
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Etale Cohomology and Galois cohomology of a field

Norm- .
Residue Proof continued.
Theorem

In particular, for * = 1, the corestriction map is induced by the norm m.ap E — k. We

Huang have °

e
Nme /(1 —a) = H 1—o()) g 1-a. ‘;Z..
oE€Gal(E/K) — (-G

This implies .

[a] U[1 — a] = [a] U coresg /i ([1 — o]) = coresg /i (resg /i ([a]) U [ — a]). =O .

L
Notice that resg /4 ([a]) = [a'] =0 € HY(E; ) = EX /1. v O

Since the Milnor K-theory is described as the tensor algebra of k* quotienting the
relation {a,1 — a}. We see ther(.e is a natural ring map KM (k) — HZ, (k; ,u,/®*) Because
the étale cohomology groups with p -coefficient is always & torsion, we see that the
above map natural factors through KM!k!/I, which we call as the norm-residue map:

KM(k)JL— H2 (ki) Noa- veskhis "op .

v

Let k be a field and | be a positive integer that is not equal to the field characteristic.
Then the norm-residue map is an isomorphism for every field k.

™7 i = = = S hel
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First Reductions: Transfer Argument

on this category taking values in Z/t—modules, and we also assume F is contravariant
for finite field extensions k’/k. Hence, for a finite field extension k — k’, we have a
composite of maps F(k) — F(k’) — F(k), we require this map is multiplication by

[K" : k] on F(k). If [k’ : k] is prime to @, then we see E@WM
) 9 FrTZ

. Hence, < 0 will imply F(k) = 0.

Both k — KM(k)/I and k — HZ(k; uf") are functors satisfying the hypothesis above.
In particular, sg do the kernel and cokernel of the norm-residue maps.

==

1 Consider the category of algebraic field extensions over k. Let F be a covariant functor

Consider a finite field extension k’/k. For the functor HJ}(—; "), we have seen it has
the restriction and corestriction. Sheaf-theorically, they are-mdtced by (F = p):

F — ff*F - F

Writing out the definition, one can see this is exactly [k’ : k]idr. For the functor
KM(—), it is obviously a covariant functor. The transfer map is induced via Nmy/ /i on

degree 1. R ,_9“ yk kll O

Using this argument, we may assume k_contains all l}_h—roots of unity, that k is a
perfect field, and even that k has no field extensions of degree prime to

12/22
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First Reductions: Characteristic 0

Proposition 6

To prove the norm-residue theorem, it's enough to show the norm-residue map for fields
k such that char(k) = 0.

1,0 7

Proof sketch.

By the transfer argument, we can suppose k is a perfect field. Let K be ion
field of its VAL ors W(k), in which case W(k) is a discrete valuation ring. By
[WerI3, 111.7,3], , one can define the specialization maps sp in this case, that are
compatlble with the norm-resid

KM ()1 S (K )
l ai o 1 A

$M (k)1 5 HE(K; ™)

Furthermore, we also know sp is a split surje€tion which is compatible with the
norm-residue map. Because Char(K) = 0, we know the top arrow is an isomorphism,
which also implies the lower arrow is also an isomorphism. O |
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Connections to Motivic cohomology

Now, we will explain how the norm-residue theorem is connected to the motivic
cohomology, where we let X = Spec(k). Recall that from last talk, we know

HP9(X,Z) =2 CHY(X,2q — p);

From [NS90], we have

Let k be a field. We have CH9(X,p) =0 for p < q and CHI(X, q) = Kg/’(k).

Consider the cofiber sequence of motive spectra Z — Z — Z/I, it induces a long exact
sequence of motivic cohomology groups:

Ey0e) HEU‘) R
CHPTYP(XGZ /1) — HP: P(x z) = HPp — HPFLP(XGZ) — -

Since HPT1:P(X;Z) = CHP(X;p—1) =0 anﬁoHp P(X;Z) = CHP(X; p) = ;\,/’(k) by
the above theorem, we see that I

HPP(X;Z/1) = KM (k) /1

—
In fact, following the same argument, we can see that

HPY(X;Z/1) =0 for p > q.
f
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Connections to Motivic cohomology

To connect this to étale cohomology. We need to remember the other interpretation of
motivic cohomology. Let X be a smooth variety. Then there is a motivic complex Z(q),
which is a complex of étale sheaves with transfers (so they are also sheaves in Zariski
and Nisnevich topology). The motive cohomology HP>9( X, Z) can be recognized as the
hypercohomology of Z(q) over X in the Zariski topology. (Remark)
Consider the complex Z/I(q) = Z/1 ® Z(q), it is still a complex of étale sheaves, and in
fact, we have by [MVWO06, 10.2]

7

HE (X 2/1(q)) 22 HE (X pf9).

—

Consider the adjunction

Lér: Shaar(X) T Shee(X): i

If F is an étale sheaf, we have a Lerray spectral sequence

EPY = HE_ (X;RYF) = HEM9(X; F),

where the inclusion of the zero-th line gives us a natural change of topology morphism.
Hence, for the motivic complex Z/I(q), we have

H7. (X:Z/1(q)) = HL(X: Z/1(a))

Let * = q, since we know Hj_(X;Z/I(q)) =2 HT9(X;Z/1) = KQ/’(k)/I, we see this
change of topology morphism recovers the norm-residue-map.

15/22



The Hilbert 90 condition

Norm- Now, we will give a road map of the proof of the norm-residue theorem. We will mainly
Residu
T follow Chapter 1 of [HW19] o o
Because étale and Zariski cohomology over Spec(k) commutes with filtered limits, for
any abilen groups A that can be written as a direct limit of Z, we have

z*ar /ét(X; A(i)) = Mzar /et(X A® Z( )) H;ar {et(X; Z(i)) ® A.

Definition 7

Fix n and /. We say that H90(n) holds if H"+1(k Z;)(n)) = 0 for any field 1// € k.
——————

When n =0, we have Hl(k, Z) = HY(Gal(k/k), Z) = Homeont.(Gal(k/k), Z) = 0.
Which implies H90(0) holds for any /. P ‘,‘#d'/

When n=1, we need to observe that Z( ) 22 Gm[1]. Hence, we have
H?(k, Z (1)) H?(k,Gm[1])() = HTK, Gm)(y = 0 by the Hilbert Theorem 90,
which JuStIerS the name.

For all n > m, the étafe cohomology HZ,(k,Z(m)) is a torsion group, so its I-torsion
ubgroup is HJ (k Z(jy(m)). When 1/1 € k, we have

H’7+1 k,Z ,)))__HE,.(_&@/ZM (m)). For n = 4 we have an exact sequence
A,’ﬁ”(k) ®Q/Z) 9H£t(k: Q/Zy(n)) = HI (ki Zgy(n)) — 0.

—————— 7 -




The Hilbert 90 condition

Norm-

Theorem

Retidue
By [MVW06, 14.23] and [MVWO06, 3.6], we have HZ,(k; Q(m)) = H"(k; Q(m)) for all

n. and n > m, H"(k,Q(m)) = 0, this implies —_— -
7@(’"?: O'O

Hg,(k, Z(m)) © Q = Hg,(k

P n

Hence, we know H(,(k,Z(m)) is a torsion group. To see the isomorphism as claimed,
we consider the [ong exact sequence induced by 0 — Z(,) - Q— Q/Z(,) — 0 as

follows: [0} D

¢ /7]
o HE (K, Q(m)) = HE, (K, Q/Z ;) (m)) — HE (K, Zy(m)) — HE (K, Q(m)) — -+ .

Hgar(k; Z(l)(n)) — Hznar(k; Q(n)

|

Hgt(k; Z(,)(n)) — Hgt(k;

(n)




The Hilbert 90 condition

Norm-
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Pengkun Fix n and I. The condition H90(n) holds if and only if the norm-residue map

AUEIE KNM(k)/1 — HZ,(k; ,u/®") is an isomorphism for every field k with 1/I € k.
In fact, H90(n) holds implies that for any smooth scheme X over k and for all p < n,
the change of topology map HE. (X;Z/1(n)) — HE,.(X;Z/I(n)) is an isomorphism

proof for the if part

| m
\

Recall that KM (k) = HZ,,(k; Z(n)). We have a commutative diagram induced by the
change of topotogy map as folflows
Py.0)

Mky —L 5 KM(k) ——» KM(k)/| —————— 0

| | l= far(2) = -t I

HZ, (ki Z(n)) —— HZ, (ki Z(n)) ——pHZ, (ki p") —> H"+1(k Z(n)) —— -]

-2

I
sm so by the commutative
2.(ki Z(n)) — HZ,(ki ©M) is surjective. By exactness, we the next
map is the zero map and the /-torsion part of H"H(k Z(;y(n)) is 0. By the lemma
s—-——-’——

above, this is saying exactly
HI (k; Zgy(n)) = 0. 4

18/22

By assumption, the third vertical map is an iso
diagram, we see H



The quick proof

Norm-

) Now, we can present a quick proof of the Norm-residue theorem with listing another
Theorem two theorems

Definition 8

We say a field k containing 1// is I-special if k has no finite field extensions of degree
prime to /. Recall we can always assume k satisfies this condition by transfer

arguement.
—l v

Suppose that H90(n — 1) holds. If k is an I-special field and KM(k)/I = 0, then

Hg\t(k, u,‘@")/: 0, which also implies H*! L‘; n)) = 0.
LT heorem 6

uppose that H90(n — 1) holds. Then for every field k of characteristic 0 and every
nonzero symbol a = {ay,- - ,an} in KM(k)/I, there is a smooth projective variety X,
whose function field K; = k(X,) satisfies
e o i Rat = oG Klwfe)

® 3 vanishes in K} (KSW — g
® the map Hg:rl(k,Z(,)(n)) — Hg:rl(Ka,Z(,)(n)) is an injection. XA W%iﬂ

cnjoctin |- & e sl BOED (Rt wey)




The quick proof

Norm- g
Residue Proof of the Norm-residue theorem.

Theorem

By our reductions, we can assume k is an /-special field and has characteristic 0. For
Huang each a € K,’\,”(k)//, by Theorem 6, there is a smooth projective variety X, such that a
vanishes in KM(k(X3))/! and H2 L (k, Zy(n)) embeds into HT(k(Xa), Z¢jy(n)). By

putting ammmenwﬂm#and using a transfinite induction, we can
get a sequence of field {ky} such that ay vanaishes in KM(ky)/I and H',”'l(k)\,Z(,)(n)
embeds into H (kxs1, Z()(n)). Setting k' = Uxky, we see that K¥(k)/I —

KM (k')/1 is & zero map and 5, (k, Z)(n)) embeds into HZ (k. Zy(n)). (Notice
here we're using Hg:“l(k/, Zy(n)) = colimy HZ™ (kx, Z(;(n)) by Theorem 59.51.3
from stacks project.) Then, we can choose an I-special algebraic extension k” of k’.

By transfer argument, we knoy that ~
e >, W _
HIF (k, Zy () S HITH (K Zgy (n) = HEFL (K", Zg)(n))

is an injection and 0
KMk /1= KM(K'Y /1 — KM (K" )1 =0

is a zero map.

Let k! = k””, and we iterate this construction to obtain an ascending sequence of field
extensions k. Let L be the union of all k™. Then L is I-special and KM(L)/I = 0 by
construction, so H7 (L, Zy(n)) = 0 by Theorem 5. Since Hg;*'l(k,Z(,) n)) embeds

into Hg:'l(L,Z(,)(n)), we finish the proof by Theorem 4. b O

~ e e e — -




H**(k; Z/n)

Let k be a field containing a primitive |-th root of unit, then there is a ring isomorphism

e H**(k, Z,/1) = KM (k) /1],

Norm-
Residue
Theorem

where T € HOY(k,Z/1) = HO(k, 1)) = Z/1 is the class representing a prlmltlve I-th

root of unity.
———— I ot

&

—

P T

Under the equivalence between étale sheaves and Galois modules, we fee p; is
equivalent to the trivial Gal(k/k)-module Z/I because the /-th root of unity is in k.
Hence, the multiplication by a primitive /-th root of unity induces an isomorphism of
Gal(k/k)-modules (Z/n)®p ®7Z/n = (Z/n)®P+L. In sheaf cohomologies, this gives an

By the norm-residue theorem and Theorem 4, we have learned that

isomorphism 7: HX (k: n®9) — H¥, (ki ®‘H'l)
Then the nofm-residue theorem and the identification of motivic cohomology with étale
cohomology finishes the proof immediately. O
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