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Milnor K -theory

Let k be a field. Milnor defined a graded ring KM
→ (k), called the Milnor K -theory of k,

as follows:

• KM
r (k) = 0 for r < 0;

• KM

0 (k) := Z;
• KM

1 (k) = k
↑;

• For i → 2, we define KM
r (k) =

↓r

i=1k
→

I
, where I is the subgroup generated by

elements of the form a1 ↑ · · ·↑ ar where ai + aj = 1 for some i ↓ j . The class
{a1 ↑ · · ·↑ ar} is typically denoted as {a1, · · · , ar}.

The Milnor K -theory can be described in total as the quotient of the tensor algebra
T

→(k↑) by the two sided ideal I generated by elements of the form {a, 1↔ a} for
a ↗ k ↔ {0, 1}.

2 / 22

Y& No-symbols-

↳ #MY
cao-al



Norm-

Residue

Theorem

Pengkun

Huang

Milnor K -theory

There are some immediate relations we can deduce from the definitions:

• Because 0 = {1, b}, we have {a, b} = ↔{a
↔1, b}.

• Because ↔a = 1↔a

1↔a↑1 , we have

{a,↔a} = {a,
1↔ a

1↔ a↔1
} = {a, 1↔ a}+ {a,

1

1↔ a↔1
}

= 0↔ {a, 1↔ a
↔1

} = {a
↔1, 1↔ a

↔1
} = 0.

• We have

0 = {ab,↔ab} = {a,↔a}+ {a, b}+ {b,↔a}+ {b, b}

= 0 + {a, b}+ {b, a}+ {b,↔1}+ {b, b}

= {a, b}+ {b, a}+ {b,↔b}

= {a, b}+ {b, a}

In particular, the third relation implies the symbols in KM
→ (k) are alternating: For any

permutation ω with sign (↔1)ω we have

{xω(1), · · · , xω(n)} = (↔1)ω{x1, · · · , xn}.
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Milnor K -theory

Let us see a basic example of Milnor K -theory:

Proposition 1

Let k = Fq be a finite field. We have

KM

r (k) = 0, r → 2.

Remember that unit group of a finite field is always cyclic, so any element in KM

2 (k)
can be written as

{x
m, xn} = mn{x , x}.

so, we just need to show that {x , x} = 0. If q is even number, we have
{x , x} = {x ,↔x} = 0. If q is an odd number, we have 2{x , x} = 0. Hence, for any
odd integer m, n, it’s true that {x , x} = mn{x , x} = {x

m, xn}. Since the odd powers of
x are classified as non-squares, it su!ces to find a non-square u such that 1↔ u is also
a nonsquare. Notice the map u ↘ 1↔ u is an injection on the set Fq ↔ {0, 1}. There is
q↔1
2 nonsquares and q↔3

2 squares, so necessarily some nonsquare will go to a nonsquare.
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Étale Cohomology and Galois Cohomology of a field

Let X = Spec(k). We consider the small étale site Xét .

Proposition 2

Let k be the separable closure of k. There is an equivalence of categories between

abelian sheaves over Xét and the category of continuous (Every element has an open

stabilizer) G = Gal(k/k)-modules.

Proof.

Let F be an abelian sheaf over Schk . Let I be the poset of finite Galois extension of k
in k. Then we can set M = colimk↓↗I F (k

↘). It has a G -action induced by the
Gal(k ↘/k)-action on F (k ↘).
On the other hand, given a continuous G -module M, for any finite separable extension

k
↘ of k, we define F (k ↘) = M

Gal(k/k↓), this defines a product preserving presheaf over
Xét by remembering every object in Xét is a finite coproduct of a!ne schemes
represented by finite separable extensions of k. To check the sheaf condition, it’s
enough to check for any finite separable extension k

↘↘/k ↘, the following sequence

0 ↘ F (k ↘) ↘ F (k ↘↘) ↘ F (k ↘↘
↑k↓ k

↘↘) ≃= F (
∏

Gal(k↓↓/k↓)

k
↘↘) =

∏

Gal(k↓↓/k↓)

F (k ↘↘)

is exact.

5 / 22

-

S

&
-

XD->0

*
-O

BAK FLRElle's

↑
-

finea b
kaly,

-
is product

-

- of finite

Gabis extesion
, separable

extensions-of
R



Norm-

Residue

Theorem

Pengkun

Huang

Étale Cohomology and Galois Cohomology of a field

Proof Continued.

By construction, we want to check

0 ↘ M
Gal(k/k↓)

↘ M
Gal(k/k↓↓)

↘

∏

Gal(k↓↓/k↓)

M
Gal(k/k↓↓)

is exact. The first one is injective since Gal(k/k ↘↘) is a subgroup of Gal(k/k ↘). The
second map is m ⇐↘

∏
ε↗Gal(k↓↓/k↓)(m ↔ ε(m)), so its kernel is exactly

(MGal(k/k↓↓))Gal(k
↓↓/k↓) = M

Gal(k/k↓).

To check it gives an equivalence of categories, we need to see there are natural
isomorphisms (exercises)

(colim
i↗I

F (i))Gal(k/k
↓) = F (k ↘)

and an isomorphism of G -modules

colim
i↗I

M
Gal(k/i) ≃= M.
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Étale Cohomology and Galois Cohomology of a field

Under this equivalence of categories, the global section function F ⇐↘ F (k) is

corresponding to the functor M ⇐↘ M
Gal(k/k). Hence, for an an étale sheaf F over

Spec(k), there is an isomorphism of cohomology

H
→
ét
(X ;F ) ≃= H

→(Gal(k/k);F (k))

Now, let us consider the sheaves that is related to the Norm-residue theorem. For start,
there is the multiplicative group scheme Gm defined by sending X to ”(X ,OX )→.
Let l ↗ N be an integer such that it’s not equal to the characteristic of the field. So
that l is invertible on Spec(k). Then we can define a map of Étale sheaves
l : Gm ↘ Gm by x ↗ Gm(U) ⇐↘ x

l
↗ Gm(U).

Proposition 3

There is a short exact sequence of Étale sheaves

0 ↘ µl ↘ Gm ↘ Gm ↘ 0,

where µn(U) = {x ↗ ”(X ,OX )→|xl = 1}.
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Étale Cohomology and Galois cohomology of a field

Proof.

By construction, µl is the kernel of the map. It’s enough to show this is a surjective
map of sheaves. To see this, we need to show for every s ↗ Gm(U), there is an open
covering {Ui ↘ U} such that s|Ui

is in the image l : Gm(Ui ) ↘ Gm(Ui ). Suppose

U = Spec(A), we set V = Spec(A[T ]/(Tl
↔ s)). The map V ↘ U is surjective

because the corresponding map is faithfully flat. Because the derivative of Tl
↔ s is

lT
l↔1 is a unit, the ring map A ↘ A[T ]/(Tl

↔ s) is a standard étale map by definition,
which implies V ↘ U is an open covering. s|V is in the image by construction. If U is
not a!ne, we can consider the relative spectrum

ω : V = Spec
U
(OU(t)/(t

l
↔ s)) ↘ U

and restricting to its a!ne open subset.

Notice this sequence is not exact if we replace étale by Zariski.
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Étale Cohomology and Galois cohomology of a field

The Kummer sequence indicates that there is a long exact sequence of cohomology
groups

0 ↘ H
0
ét
(X ;µl ) ↘ H

0
ét
(X ;Gm)

n
↔↘ H

0
ét
(X ;Gm) ↘ H

1
ét
(X ;µl ) ↘ H

1
ét
(X ;Gm) ↘ · · ·

For the 0-th cohomology, we have

H
0
ét
(X ;Gm) = k

↑.

Hence, we have
H

0
ét
(X ;µl ) = Ker(l : k↑

↘ k
↑)

For a field k containing an l-th root of unity, we see that

H
0
ét
(X ;µl ) ≃= Z/l .

Otherwise, we have H
0
ét
(X ;µl ) ≃= 0. For the first cohomology, we have the Hilbert 90:

H
1
ét
(X ;Gm) ≃= H

1(Gal(k/k); k↑) = 0.

This implies that
H

1
ét
(X ;µl ) ≃= k

↑/l .
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Étale Cohomology and Galois cohomology of a field

On étale cohomology, one can imagine one can define an external cup product:

H
n(X ;F )↑ H

m(X ;G) ↘ H
m+n(X ;F ↑ G)

This gives a graded ring (for ⇒ = 0, µ↓0
l

:= Z/l):

H
→
ét
(X ;µ↓→

l
) =

⊕

m

H
m

ét
(X ;µ↓m

l
).

Proposition 4

For [a], [1↔ a] ↗ k
↑/l ≃= H

1
ét
(X , µl ) where a ⇑= 1, 0, we have a relation

[a] ⇓ [1↔ a] = 0 ↗ H
2
ét
(X ;µ↓2

l
).

Proof.

Let ϑ = l
⇔
a and consider E = k(ϑ). Then the inclusion i : k ↘ E induces two natural

maps on the étale cohomology groups resE/k : H→(k;µ↓→
l

) ↘ H
→(E ;µ↓→

l
) and

coresE/k : H→(E ;µ↓→
l

) ↘ H
→(k;µ↓→

l
) that are compatible with cup product in the

following way:
coresE/k (x) ⇓ y = coresE/k (x ⇓ resE/k (y)).
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Étale Cohomology and Galois cohomology of a field

Proof continued.

In particular, for ⇒ = 1, the corestriction map is induced by the norm map E ↘ k. We
have

NmE/k (1↔ ϑ) =
∏

ε↗Gal(E/k)

(1↔ ε(ϑ)) = 1↔ a.

This implies

[a] ⇓ [1↔ a] = [a] ⇓ coresE/k ([1↔ ϑ]) = coresE/k (resE/k ([a]) ⇓ [1↔ ϑ]).

Notice that resE/k ([a]) = [ϑl ] = 0 ↗ H
1(E ;µl ) ≃= E

↑/l .

Since the Milnor K -theory is described as the tensor algebra of k↑ quotienting the
relation {a, 1↔ a}. We see there is a natural ring map KM (k) ↘ H

→
ét
(k;µ↓→

l
). Because

the étale cohomology groups with µl -coe!cient is always n-torsion, we see that the
above map natural factors through KM(k)/l , which we call as the norm-residue map:

KM(k)/l ↘ H
→
ét
(k;µ↓→

l
)

Theorem 1

Let k be a field and l be a positive integer that is not equal to the field characteristic.

Then the norm-residue map is an isomorphism for every field k.
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First Reductions: Transfer Argument

Consider the category of algebraic field extensions over k. Let F be a covariant functor
on this category taking values in Z/n-modules, and we also assume F is contravariant
for finite field extensions k

↘/k. Hence, for a finite field extension k ↘ k
↘, we have a

composite of maps F (k) ↘ F (k ↘) ↘ F (k), we require this map is multiplication by
[k ↘ : k] on F (k). If [k ↘ : k] is prime to n, then we see F (k) injects as a summand of
F (k ↘) = 0. Hence, F (k ↘) = 0 will imply F (k) = 0.

Proposition 5

Both k ⇐↘ KM
m (k)/l and k ⇐↘ H

m

ét
(k;µm

l
) are functors satisfying the hypothesis above.

In particular, so do the kernel and cokernel of the norm-residue maps.

Proof.

Consider a finite field extension k
↘/k. For the functor Hm

ét
(↔;µm

l
), we have seen it has

the restriction and corestriction. Sheaf-theorically, they are induced by (F = µl ):

F ↘ f→f
→
F ↘ F

Writing out the definition, one can see this is exactly [k ↘ : k] idF . For the functor
K

M
m (↔), it is obviously a covariant functor. The transfer map is induced via Nmk↓/k on

degree 1.

Using this argument, we may assume k contains all nth-roots of unity, that k is a

perfect field, and even that k has no field extensions of degree prime to n.
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First Reductions: Characteristic 0

Proposition 6

To prove the norm-residue theorem, it’s enough to show the norm-residue map for fields

k such that char(k) = 0.

Proof sketch.

By the transfer argument, we can suppose k is a perfect field. Let K be the fraction
field of its Witt vectors W(k), in which case W(k) is a discrete valuation ring. By
[Wei13, III.7.3], , one can define the specialization maps sp in this case, that are
compatible with the norm-residue maps in the following sense:

KM
m (K)/l H

m

ét
(K ;µ↓m

l
)

KM
m (k)/l H

m

ét
(K ;µ↓m

l
)

sp sp

Furthermore, we also know sp is a split surjection which is compatible with the
norm-residue map. Because Char(K) = 0, we know the top arrow is an isomorphism,
which also implies the lower arrow is also an isomorphism.
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Connections to Motivic cohomology

Now, we will explain how the norm-residue theorem is connected to the motivic
cohomology, where we let X = Spec(k). Recall that from last talk, we know

H
p,q(X ,Z) ≃= CHq(X , 2q ↔ p);

From [NS90], we have

Theorem 2

Let k be a field. We have CHq(X , p) = 0 for p < q and CHq(X , q) = KM
q (k).

Consider the cofiber sequence of motive spectra Z ↘ Z ↘ Z/l , it induces a long exact
sequence of motivic cohomology groups:

· · ·H
p↔1,p(X ;Z/l) ↘ H

p,p(X ;Z) ↑l
↔↘ H

p,p(X ;Z) ↘ H
p,p(X ;Z/l) ↘ H

p+1,p(X ;Z) ↘ · · ·

Since H
p+1,p(X ;Z) ≃= CHp(X ; p ↔ 1) = 0 and H

p,p(X ;Z) ≃= CHp(X ; p) ≃= KM
p (k) by

the above theorem, we see that

H
p,p(X ;Z/l) ≃= KM

p (k)/l .

In fact, following the same argument, we can see that

H
p,q(X ;Z/l) = 0 for p > q.
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Connections to Motivic cohomology

To connect this to étale cohomology. We need to remember the other interpretation of
motivic cohomology. Let X be a smooth variety. Then there is a motivic complex Z(q),
which is a complex of étale sheaves with transfers (so they are also sheaves in Zariski
and Nisnevich topology). The motive cohomology H

p,q(X ,Z) can be recognized as the
hypercohomology of Z(q) over X in the Zariski topology. (Remark)
Consider the complex Z/l(q) = Z/l ↑ Z(q), it is still a complex of étale sheaves, and in
fact, we have by [MVW06, 10.2]

H
→
ét
(X ;Z/l(q)) ≃= H

→
ét
(X ;µ↓q

l
).

Consider the adjunction

Lét : Shzar(X ) Shét(X ) : i≃
If F is an étale sheaf, we have a Lerray spectral sequence

E
p,q
2 = H

p

Zar(X ;Rq
iF ) ↖ H

p+q

ét
(X ;F ),

where the inclusion of the zero-th line gives us a natural change of topology morphism.
Hence, for the motivic complex Z/l(q), we have

H
→
Zar(X ;Z/l(q)) ↘ H

→
ét
(X ;Z/l(q))

Let ⇒ = q, since we know H
q

Zar(X ;Z/l(q)) ≃= H
q,q(X ;Z/l) ≃= KM

q (k)/l , we see this
change of topology morphism recovers the norm-residue map.
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The Hilbert 90 condition

Now, we will give a road map of the proof of the norm-residue theorem. We will mainly
follow Chapter 1 of [HW19].
Because étale and Zariski cohomology over Spec(k) commutes with filtered limits, for
any abilen groups A that can be written as a direct limit of Z, we have

H
→
zar /ét(X ;A(i)) = H

→
zar /ét(X ;A↑ Z(i)) ≃= H

→
zar /ét(X ;Z(i))↑ A.

Definition 7

Fix n and l . We say that H90(n) holds if Hn+1
ét

(k,Z(l)(n)) = 0 for any field 1/l ↗ k.

When n = 0, we have H
1(k,Z) = H

1(Gal(k/k),Z) = Homcont.(Gal(k/k),Z) = 0.
Which implies H90(0) holds for any l .
When n = 1, we need to observe that Z(1) ≃= Gm[1]. Hence, we have
H

2(k,Z(l)(1)) = H
2(k,Gm[1])(l) ≃= H

1(k,Gm)(l) = 0 by the Hilbert Theorem 90,
which justifies the name.

Lemma 3

For all n > m, the étale cohomology H
n

ét
(k,Z(m)) is a torsion group, so its l-torsion

subgroup is H
n

ét
(k,Z(l)(m)). When 1/l ↗ k, we have

H
n+1
ét

(k,Z(l)(m)) ≃= H
n

ét
(k,Q/Z(l)(m)). For n = l , we have an exact sequence

KM

n (k)↑ Q/Z(l) ↘ H
n

ét
(k;Q/Z(l)(n)) ↘ H

n+1
ét

(k;Z(l)(n)) ↘ 0.
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The Hilbert 90 condition

Proof.

By [MVW06, 14.23] and [MVW06, 3.6], we have H
n

ét
(k;Q(m)) ≃= H

n(k;Q(m)) for all
n. and n > m, Hn(k,Q(m)) = 0, this implies

H
n

ét
(k,Z(m))↑ Q ≃= H

n

ét
(k,Q(m)) = 0.

Hence, we know H
n

ét
(k,Z(m)) is a torsion group. To see the isomorphism as claimed,

we consider the long exact sequence induced by 0 ↘ Z(l) ↘ Q ↘ Q/Z(l) ↘ 0 as
follows:

· · · ↘ H
n

ét
(k,Q(m)) ↘ H

n

ét
(k,Q/Z(l)(m)) ↘ H

n+1
ét

(k,Z(l)(m)) ↘ H
n+1
ét

(k,Q(m)) ↘ · · · .

We see the isomorphism by observing the first and the last cohomology groups are zero.
To get the exact sequence, we consider the following commutative diagram:

H
n
zar(k;Z(l)(n)) H

n
zar(k;Q(n)) H

n
zar(k;Q/Z(l)(n)) 0

H
n

ét
(k;Z(l)(n)) H

n

ét
(k;Q(n)) H

n

ét
(k;Q/Z(l)(n)) H

n+1
ét

(k;Z(l)(n))

⇐=

This almost gives u the exact sequence by noticing that KM
n (k)/l ↑ Q/Z(l)

≃=
H

n
zar(k;Q/Z(l)(n)). The exactness in the middle follows from a easy diagram chase.
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The Hilbert 90 condition

Theorem 4

Fix n and l . The condition H90(n) holds if and only if the norm-residue map

KM
n (k)/l ↘ H

n

ét
(k;µ↓n

l
) is an isomorphism for every field k with 1/l ↗ k.

In fact, H90(n) holds implies that for any smooth scheme X over k and for all p ↓ n,

the change of topology map H
p

zar(X ;Z/l(n)) ↘ H
p

ét
(X ;Z/l(n)) is an isomorphism.

proof for the if part.

Recall that KM
n (k) ≃= H

n
zar(k;Z(n)). We have a commutative diagram induced by the

change of topology map as follows

KM
n (k) KM

n (k) KM
n (k)/l 0

H
n

ét
(k;Z(n)) H

n

ét
(k;Z(n)) H

n

ét
(k;µ↓n

l
) H

n+1
ét

(k;Z(n)) · · ·

l

l l

By assumption, the third vertical map is an isomorphism so by the commutative
diagram, we see H

n

ét
(k;Z(n)) ↘ H

n

ét
(k;µ↓n

l
) is surjective. By exactness, we the next

map is the zero map and the l-torsion part of Hn+1
ét

(k;Z(l)(n)) is 0. By the lemma
above, this is saying exactly

H
n+1
ét

(k;Z(l)(n)) = 0.
18 / 22
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The quick proof

Now, we can present a quick proof of the Norm-residue theorem with listing another
two theorems

Definition 8

We say a field k containing 1/l is l-special if k has no finite field extensions of degree
prime to l . Recall we can always assume k satisfies this condition by transfer
arguement.

Theorem 5

Suppose that H90(n ↔ 1) holds. If k is an l-special field and KM
n (k)/l = 0, then

H
n

ét
(k, µ↓n

l
) = 0, which also implies H

n+1
ét

(k,Z(l)(n)) = 0.

Theorem 6

Suppose that H90(n ↔ 1) holds. Then for every field k of characteristic 0 and every

nonzero symbol a = {a1, · · · , an} in KM
n (k)/l , there is a smooth projective variety Xa

whose function field Ka = k(Xa) satisfies

• a vanishes in KM
n (Ka)/l ;

• the map H
n+1
ét

(k,Z(l)(n)) ↘ H
n+1
ét

(Ka,Z(l)(n)) is an injection.
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The quick proof

Proof of the Norm-residue theorem.

By our reductions, we can assume k is an l-special field and has characteristic 0. For
each a ↗ KM

n (k)/l , by Theorem 6, there is a smooth projective variety Xa such that a
vanishes in KM

n (k(Xa))/l and H
n+1
ét

(k,Z(l)(n)) embeds into H
n+1
ét

(k(Xa),Z(l)(n)). By

putting an well-order of elements in KM
n (k)/l and using a transfinite induction, we can

get a sequence of field {kϑ} such that aϑ vanaishes in KM
n (kϑ)/l and H

n+1
ét

(kϑ,Z(l)(n))

embeds into H
n+1
ét

(kϑ+1,Z(l)(n)). Setting k
↘ = ⇓ϑkϑ, we see that KM

n (k)/l ↘

KM
n (k ↘)/l is a zero map and H

n+1
ét

(k,Z(l)(n)) embeds into H
n+1
ét

(k ↘,Z(l)(n)). (Notice

here we’re using H
n+1
ét

(k ↘,Z(l)(n)) ≃= colimϑ H
n+1
ét

(kϑ,Z(l)(n)) by Theorem 59.51.3
from stacks project.) Then, we can choose an l-special algebraic extension k

↘↘ of k ↘.
By transfer argument, we know that

H
n+1
ét

(k,Z(l)(n)) ↘ H
n+1
ét

(k ↘,Z(l)(n)) ↘ H
n+1
ét

(k ↘↘,Z(l)(n))

is an injection and
KM

n (k)/l ↘ KM

n (k ↘)/l ↘ KM

n (k ↘↘)/l

is a zero map.
Let k1 = k

↘↘, and we iterate this construction to obtain an ascending sequence of field
extensions k

m. Let L be the union of all km. Then L is l-special and KM
n (L)/l = 0 by

construction, so H
n+1
ét

(L,Z(l)(n)) = 0 by Theorem 5. Since H
n+1
ét

(k,Z(l)(n)) embeds

into H
n+1
ét

(L,Z(l)(n)), we finish the proof by Theorem 4.
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H
⇒,⇒

(k ;Z/n)

Corollary 7

Let k be a field containing a primitive l-th root of unit, then there is a ring isomorphism

H
→,→(k,Z/l) ≃= KM

→ (k)/l [ϖ ],

where ϖ ↗ H
0,1(k,Z/l) ≃= H

0(k, µl ) ≃= Z/l is the class representing a primitive l-th

root of unity.

Proof.

By the norm-residue theorem and Theorem 4, we have learned that

H
p,q(k,Z/l) ≃=

{
H

p

ét
(k, µ↓q

l
) p → q;

0 p < q

Under the equivalence between étale sheaves and Galois modules, we see µl is
equivalent to the trivial Gal(k/k)-module Z/l because the l-th root of unity is in k.
Hence, the multiplication by a primitive l-th root of unity induces an isomorphism of
Gal(k/k)-modules (Z/n)↓p

↑ Z/n ≃= (Z/n)↓p+1. In sheaf cohomologies, this gives an

isomorphism ϖ : H→
ét
(k;µ↓q

l
) ↘ H

→
ét
(k;µ↓q+1

l
).

Then the norm-residue theorem and the identification of motivic cohomology with étale
cohomology finishes the proof immediately.
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